# Machine Learning

## Transformers: how do they work internally?

Table of Contents Introduction The Transformer is currently one of the most popular architectures for NLP. We can periodically hear news about new architectures and models based on transformers generating a lot of buzz and expectations in the community. Google Research and members from Google Brain initially proposed the Transformer...

## Support Vector Machines (SVM) for Classification

The purpose of this document is to present the linear classification algorithm SVM. The development of this concept has been based on previous ideas that have supported the development of SVM as an algorithm with good generalization capacity, based on an optimization criterion that minimizes complexity; with which we have...

## TensorFlow High-Level Libraries: TF Estimator

TensorFlow has several high-level libraries allowing us to reduce time modeling all with core code. TF Estimator makes it simple to create and train models for training, evaluating, predicting and exporting. TF Estimator provides 4 main functions on any kind of estimator: estimator.fit() estimator.evaluate() estimator.predict() estimator.export() All predefined estimators are...

## TensorFlow Way for Linear Regression

In my two previous posts, we saw how we can perform Linear Regression using TensorFlow, but I’ve used Linear Least Squares Regression and Cholesky Decomposition, both them use matrices to resolve regression, and TensorFlow isn’t a requisite for this, but you can use more general packages like NumPy. One of...

## Cholesky Decomposition for Linear Regression with TensorFlow

Although Linear Least Squares Regression is simple and precise, it can be inefficient when matrices get very large. Cholesky decomposition is another approach to solve matrices efficiently by Linear Least Squares, as it decomposes a matrix into a lower and upper triangular matrix (L and LT). Finally, linear regression with Cholesky decomposition...

## Linear Least Squares Regression with TensorFlow

Linear Least Squares Regression is by far the most widely used regression method, and it is suitable for most cases when data behavior is linear. By definition, a line is defined by the following equation: For all data points (xi, yi) we have to minimize the sum of the squared...

## Classification Loss Functions (Part II)

In my previous post, I mentioned 3 loss functions, which are mostly intended to be used in Regression models. This time, I’m going to talk about Classification Loss Functions, which are going to be used to evaluate loss when predicting categorical outcomes. Let’s consider the following vector to help us...

## Loss Functions (Part 1)

Implementing Loss Functions is very important to machine learning algorithms because we can measure the error from the predicted outputs to the target values. Algorithms get optimized by evaluating outcomes depending on a specified loss function, and TensorFlow works in this way as well. We can think on Loss Functions...